////////////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2008 The Regents of the University of California
//
// This file is part of Qbox
//
// Qbox is distributed under the terms of the GNU General Public License
// as published by the Free Software Foundation, either version 2 of
// the License, or (at your option) any later version.
// See the file COPYING in the root directory of this distribution
// or .
//
////////////////////////////////////////////////////////////////////////////////
//
// B3LYPFunctional.C
//
////////////////////////////////////////////////////////////////////////////////
#include
#include
#include "B3LYPFunctional.h"
using namespace std;
////////////////////////////////////////////////////////////////////////////////
B3LYPFunctional::B3LYPFunctional(const vector > &rhoe)
{
_nspin = rhoe.size();
if ( _nspin > 1 ) assert(rhoe[0].size() == rhoe[1].size());
_np = rhoe[0].size();
if ( _nspin == 1 )
{
_exc.resize(_np);
_vxc1.resize(_np);
_vxc2.resize(_np);
_grad_rho[0].resize(_np);
_grad_rho[1].resize(_np);
_grad_rho[2].resize(_np);
rho = &rhoe[0][0];
grad_rho[0] = &_grad_rho[0][0];
grad_rho[1] = &_grad_rho[1][0];
grad_rho[2] = &_grad_rho[2][0];
exc = &_exc[0];
vxc1 = &_vxc1[0];
vxc2 = &_vxc2[0];
}
else
{
// not implemented
assert(false);
}
}
////////////////////////////////////////////////////////////////////////////////
void B3LYPFunctional::setxc(void)
{
if ( _np == 0 ) return;
if ( _nspin == 1 )
{
assert( rho != 0 );
assert( grad_rho[0] != 0 && grad_rho[1] != 0 && grad_rho[2] != 0 );
assert( exc != 0 );
assert( vxc1 != 0 );
assert( vxc2 != 0 );
for ( int i = 0; i < _np; i++ )
{
double grad = sqrt(grad_rho[0][i]*grad_rho[0][i] +
grad_rho[1][i]*grad_rho[1][i] +
grad_rho[2][i]*grad_rho[2][i] );
excb3lyp(rho[i],grad,&exc[i],&vxc1[i],&vxc2[i]);
}
}
else
{
#if 0 // not implemented
assert( rho_up != 0 );
assert( rho_dn != 0 );
assert( grad_rho_up[0] != 0 && grad_rho_up[1] != 0 && grad_rho_up[2] != 0 );
assert( grad_rho_dn[0] != 0 && grad_rho_dn[1] != 0 && grad_rho_dn[2] != 0 );
assert( exc_up != 0 );
assert( exc_dn != 0 );
assert( vxc1_up != 0 );
assert( vxc1_dn != 0 );
assert( vxc2_upup != 0 );
assert( vxc2_updn != 0 );
assert( vxc2_dnup != 0 );
assert( vxc2_dndn != 0 );
for ( int i = 0; i < _np; i++ )
{
double grx_up = grad_rho_up[0][i];
double gry_up = grad_rho_up[1][i];
double grz_up = grad_rho_up[2][i];
double grx_dn = grad_rho_dn[0][i];
double gry_dn = grad_rho_dn[1][i];
double grz_dn = grad_rho_dn[2][i];
double grx = grx_up + grx_dn;
double gry = gry_up + gry_dn;
double grz = grz_up + grz_dn;
double grad_up = sqrt(grx_up*grx_up + gry_up*gry_up + grz_up*grz_up);
double grad_dn = sqrt(grx_dn*grx_dn + gry_dn*gry_dn + grz_dn*grz_dn);
double grad = sqrt(grx*grx + gry*gry + grz*grz);
excpbe_sp(rho_up[i],rho_dn[i],grad_up,grad_dn,grad,&exc_up[i],&exc_dn[i],
&vxc1_up[i],&vxc1_dn[i],&vxc2_upup[i],&vxc2_dndn[i],
&vxc2_updn[i], &vxc2_dnup[i]);
}
#endif
}
}
////////////////////////////////////////////////////////////////////////////////
void B3LYPFunctional::excb3lyp(double rho, double grad,
double *exc, double *vxc1, double *vxc2)
{
*exc = 0.0;
*vxc1 = 0.0;
*vxc2 = 0.0;
if ( rho < 1.e-18 )
{
return;
}
// LDA correlation
// Perdew-Zunger parametrization of Ceperley-Alder data
// const double third=1.0/3.0;
// c1 is (3.D0/(4.D0*pi))**third
const double c1 = 0.6203504908994001;
// alpha = (4/(9*pi))**third = 0.521061761198
// const double alpha = 0.521061761198;
// c2 = -(3/(4*pi)) / alpha = -0.458165293283
// const double c2 = -0.458165293283;
// c3 = (4/3) * c2 = -0.610887057711
const double c3 = -0.610887057711;
const double A = 0.0311;
const double B = -0.048;
const double b1 = 1.0529;
const double b2 = 0.3334;
const double G = -0.1423;
// C from the PZ paper: const double C = 0.0020;
// D from the PZ paper: const double D = -0.0116;
// C and D by matching Ec and Vc at rs=1
const double D = G / ( 1.0 + b1 + b2 ) - B;
const double C = -A - D - G * ( (b1/2.0 + b2) / ((1.0+b1+b2)*(1.0+b1+b2)));
double ro13 = cbrt(rho);
double rs = c1 / ro13;
double ec_lda=0.0,vc_lda=0.0;
// Next line : exchange in Hartree units
double vx_lda = c3 / rs;
double ex_lda = 0.75 * vx_lda;
// Next lines : Ceperley & Alder correlation (Zunger & Perdew)
if ( rs < 1.0 )
{
double logrs = log(rs);
ec_lda = A * logrs + B + C * rs * logrs + D * rs;
vc_lda = A * logrs + ( B - A / 3.0 ) +
(2.0/3.0) * C * rs * logrs +
( ( 2.0 * D - C ) / 3.0 ) * rs;
}
else
{
double sqrtrs = sqrt(rs);
double den = 1.0 + b1 * sqrtrs + b2 * rs;
ec_lda = G / den;
vc_lda = ec_lda * ( 1.0 + (7.0/6.0) * b1 * sqrtrs +
(4.0/3.0) * b2 * rs ) / den;
}
// Becke88 exchange: A.D.Becke, Phys.Rev. B38, 3098 (1988)
// Becke88 exchange constants
const double beta=0.0042;
//const double ax = -0.7385587663820224058; /* -0.75*pow(3.0/pi,third) */
const double axa = -0.9305257363490999; /* -1.5*pow(3.0/(4*pi),third) */
const double rha = 0.5 * rho;
const double grada = 0.5 * grad;
const double rha13 = pow ( rha, 1.0/3.0 );
const double rha43 = rha * rha13;
const double xa = grada / rha43;
const double xa2 = xa*xa;
const double asinhxa = asinh(xa);
const double frac = 1.0 / ( 1.0 + 6.0 * beta * xa * asinhxa );
const double ga = axa - beta * xa2 * frac;
const double ex_b88 = rha13 * ga;
// Becke88 GGA exchange correction
const double dex_b88 = ex_b88 - ex_lda;
// Becke88 potential
const double gpa = ( 6.0*beta*beta*xa2 * ( xa/sqrt(xa2+1.0) - asinhxa )
- 2.0*beta*xa ) * frac*frac;
const double vx1_b88 = rha13 * (4.0/3.0) * ( ga - xa * gpa );
const double vx2_b88 = - 0.5 * gpa / grada;
// Becke88 GGA exchange correction potential
const double dvx1_b88 = vx1_b88 - vx_lda;
const double dvx2_b88 = vx2_b88;
//------------------------------------------------------------
// LYP correlation
// Phys. Rev. B 37, 785 (1988).
// LYP constants
const double a = 0.04918;
const double b = 0.132;
const double ab36 = a * b / 36.0;
const double c = 0.2533;
const double c_third = c / 3.0;
const double d = 0.349;
const double d_third = d / 3.0;
const double cf = 2.87123400018819; /* (3/10)*pow(3*pi*pi,2/3) */
const double cfb = cf * b;
// next lines specialized to the unpolarized case
const double rh13 = pow ( rho, 1.0/3.0 );
const double rhm13 = 1.0 / rh13;
const double rhm43 = rhm13 / rho;
const double e = exp ( - c * rhm13 );
const double num = 1.0 + cfb * e;
const double den = 1.0 + d * rhm13;
const double deninv = 1.0 / den;
const double cfrac = num * deninv;
const double delta = rhm13 * ( c + d * deninv );
const double rhm53 = rhm43 * rhm13;
const double t1 = e * deninv;
const double t2 = rhm53;
const double t3 = 6.0 + 14.0 * delta;
const double g = ab36 * t1 * t2 * t3;
/* next line, ec is the energy density, hence divide the energy by rho */
const double ec_lyp = - a * cfrac + 0.25 * g * grad * grad / rho;
/* energy done, now the potential */
const double de = c_third * rhm43 * e;
const double dnum = cfb * de;
const double dden = - d_third * rhm43;
const double dfrac = ( dnum * den - dden * num ) * deninv * deninv;
const double ddelta = - (1.0/3.0) * rhm43 * ( c + d * deninv ) -
rhm13 * d * dden * deninv * deninv;
const double dt1 = de * deninv - e * dden * deninv * deninv;
const double dt2 = - (5.0/3.0) * rhm53/rho;
const double dt3 = 14.0 * ddelta;
const double dg = ab36 * ( dt1 * t2 * t3 + t1 * dt2 * t3 + t1 * t2 * dt3 );
const double vc1_lyp = - a * (cfrac + rho * dfrac) + 0.25 * dg * grad * grad;
const double vc2_lyp = -0.5 * g;
// Coefficients of the B3LYP functional
// A. Becke, JCP 98, 5648 (1993)
// See also X.Xu and W. Goddard, J.Phys.Chem. A108, 2305 (2004)
// EcLSDA is the Perdew-Zunger parametrization of Ceperley-Alder data
// 0.2 ExHF + 0.80 ExSlater + 0.19 EcLSDA + 0.81 EcLYP + 0.72 dExBecke88
const double xlda_coeff = 0.80; // Slater exchange
const double clda_coeff = 0.19; // LSDA correlation
const double xb88_coeff = 0.72; // Becke88 exchange gradient correction
const double clyp_coeff = 1.0 - clda_coeff;
*exc = xlda_coeff * ex_lda +
clda_coeff * ec_lda +
xb88_coeff * dex_b88 +
clyp_coeff * ec_lyp;
*vxc1 = xlda_coeff * vx_lda +
clda_coeff * vc_lda +
xb88_coeff * dvx1_b88 +
clyp_coeff * vc1_lyp;
*vxc2 = xb88_coeff * dvx2_b88 +
clyp_coeff * vc2_lyp;
}