////////////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2008 The Regents of the University of California
//
// This file is part of Qbox
//
// Qbox is distributed under the terms of the GNU General Public License
// as published by the Free Software Foundation, either version 2 of
// the License, or (at your option) any later version.
// See the file COPYING in the root directory of this distribution
// or .
//
////////////////////////////////////////////////////////////////////////////////
//
// BLYPFunctional.C
//
////////////////////////////////////////////////////////////////////////////////
#include
#include
#include "BLYPFunctional.h"
using namespace std;
////////////////////////////////////////////////////////////////////////////////
BLYPFunctional::BLYPFunctional(const vector > &rhoe)
{
_nspin = rhoe.size();
if ( _nspin > 1 ) assert(rhoe[0].size() == rhoe[1].size());
_np = rhoe[0].size();
if ( _nspin == 1 )
{
_exc.resize(_np);
_vxc1.resize(_np);
_vxc2.resize(_np);
_grad_rho[0].resize(_np);
_grad_rho[1].resize(_np);
_grad_rho[2].resize(_np);
rho = &rhoe[0][0];
grad_rho[0] = &_grad_rho[0][0];
grad_rho[1] = &_grad_rho[1][0];
grad_rho[2] = &_grad_rho[2][0];
exc = &_exc[0];
vxc1 = &_vxc1[0];
vxc2 = &_vxc2[0];
}
else
{
_exc_up.resize(_np);
_exc_dn.resize(_np);
_vxc1_up.resize(_np);
_vxc1_dn.resize(_np);
_vxc2_upup.resize(_np);
_vxc2_updn.resize(_np);
_vxc2_dnup.resize(_np);
_vxc2_dndn.resize(_np);
_grad_rho_up[0].resize(_np);
_grad_rho_up[1].resize(_np);
_grad_rho_up[2].resize(_np);
_grad_rho_dn[0].resize(_np);
_grad_rho_dn[1].resize(_np);
_grad_rho_dn[2].resize(_np);
rho_up = &rhoe[0][0];
rho_dn = &rhoe[1][0];
grad_rho_up[0] = &_grad_rho_up[0][0];
grad_rho_up[1] = &_grad_rho_up[1][0];
grad_rho_up[2] = &_grad_rho_up[2][0];
grad_rho_dn[0] = &_grad_rho_dn[0][0];
grad_rho_dn[1] = &_grad_rho_dn[1][0];
grad_rho_dn[2] = &_grad_rho_dn[2][0];
exc_up = &_exc_up[0];
exc_dn = &_exc_dn[0];
vxc1_up = &_vxc1_up[0];
vxc1_dn = &_vxc1_dn[0];
vxc2_upup = &_vxc2_upup[0];
vxc2_updn = &_vxc2_updn[0];
vxc2_dnup = &_vxc2_dnup[0];
vxc2_dndn = &_vxc2_dndn[0];
}
}
////////////////////////////////////////////////////////////////////////////////
void BLYPFunctional::setxc(void)
{
if ( _np == 0 ) return;
if ( _nspin == 1 )
{
assert( rho != 0 );
assert( grad_rho[0] != 0 && grad_rho[1] != 0 && grad_rho[2] != 0 );
assert( exc != 0 );
assert( vxc1 != 0 );
assert( vxc2 != 0 );
double ex,vx1,vx2,ec,vc1,vc2;
for ( int i = 0; i < _np; i++ )
{
double grad = sqrt(grad_rho[0][i]*grad_rho[0][i] +
grad_rho[1][i]*grad_rho[1][i] +
grad_rho[2][i]*grad_rho[2][i] );
exb88(rho[i],grad,&ex,&vx1,&vx2);
eclyp(rho[i],grad,&ec,&vc1,&vc2);
exc[i] = ex + ec;
vxc1[i] = vx1 + vc1;
vxc2[i] = vc1 + vc2;
}
}
else
{
assert( rho_up != 0 );
assert( rho_dn != 0 );
assert( grad_rho_up[0] != 0 && grad_rho_up[1] != 0 && grad_rho_up[2] != 0 );
assert( grad_rho_dn[0] != 0 && grad_rho_dn[1] != 0 && grad_rho_dn[2] != 0 );
assert( exc_up != 0 );
assert( exc_dn != 0 );
assert( vxc1_up != 0 );
assert( vxc1_dn != 0 );
assert( vxc2_upup != 0 );
assert( vxc2_updn != 0 );
assert( vxc2_dnup != 0 );
assert( vxc2_dndn != 0 );
double ex_up,ex_dn,vx1_up,vx1_dn,vx2_upup,vx2_dndn,vx2_updn,vx2_dnup;
double ec_up,ec_dn,vc1_up,vc1_dn,vc2_upup,vc2_dndn,vc2_updn,vc2_dnup;
for ( int i = 0; i < _np; i++ )
{
double grx_up = grad_rho_up[0][i];
double gry_up = grad_rho_up[1][i];
double grz_up = grad_rho_up[2][i];
double grx_dn = grad_rho_dn[0][i];
double gry_dn = grad_rho_dn[1][i];
double grz_dn = grad_rho_dn[2][i];
double grad_up2 = grx_up*grx_up + gry_up*gry_up + grz_up*grz_up;
double grad_dn2 = grx_dn*grx_dn + gry_dn*gry_dn + grz_dn*grz_dn;
double grad_up_grad_dn = grx_up*grx_dn + gry_up*gry_dn + grz_up*grz_dn;
exb88_sp(rho_up[i],rho_dn[i],grad_up2,grad_dn2,grad_up_grad_dn,
&ex_up,&ex_dn,&vx1_up,&vx1_dn,
&vx2_upup,&vx2_dndn,&vx2_updn,&vx2_dnup);
eclyp_sp(rho_up[i],rho_dn[i],grad_up2,grad_dn2,grad_up_grad_dn,
&ec_up,&ec_dn,&vc1_up,&vc1_dn,
&vc2_upup,&vc2_dndn,&vc2_updn,&vc2_dnup);
exc_up[i] = ex_up + ec_up;
exc_dn[i] = ex_dn + ec_dn;
vxc1_up[i] = vx1_up + vc1_up;
vxc1_dn[i] = vx1_dn + vc1_dn;
vxc2_upup[i] = vx2_upup + vc2_upup;
vxc2_dndn[i] = vx2_dndn + vc2_dndn;
vxc2_updn[i] = vx2_updn + vc2_updn;
vxc2_dnup[i] = vx2_dnup + vc2_dnup;
}
}
}
////////////////////////////////////////////////////////////////////////////////
void BLYPFunctional::exb88(double rho, double grad,
double *ex, double *vx1, double *vx2)
{
// Becke exchange constants
const double fourthirds = 4.0 / 3.0;
const double beta=0.0042;
const double axa = -0.9305257363490999; // -1.5*pow(3.0/(4*pi),third)
*ex = 0.0;
*vx1 = 0.0;
*vx2 = 0.0;
if ( rho < 1.e-10 ) return;
// Becke's exchange
// A.D.Becke, Phys.Rev. B38, 3098 (1988)
const double rha = 0.5 * rho;
const double grada = 0.5 * grad;
const double rha13 = cbrt(rha);
const double rha43 = rha * rha13;
const double xa = grada / rha43;
const double xa2 = xa*xa;
const double asinhxa = asinh(xa);
const double frac = 1.0 / ( 1.0 + 6.0 * beta * xa * asinhxa );
const double ga = axa - beta * xa2 * frac;
// in next line, ex is the energy density, hence rh13
*ex = rha13 * ga;
// potential
const double gpa = ( 6.0*beta*beta*xa2 * ( xa/sqrt(xa2+1.0) - asinhxa )
- 2.0*beta*xa ) * frac*frac;
*vx1 = rha13 * fourthirds * ( ga - xa * gpa );
*vx2 = - 0.5 * gpa / grada;
}
////////////////////////////////////////////////////////////////////////////////
void BLYPFunctional::eclyp(double rho, double grad,
double *ec, double *vc1, double *vc2)
{
// LYP constants
const double a = 0.04918;
const double b = 0.132;
const double ab36 = a * b / 36.0;
const double c = 0.2533;
const double c_third = c / 3.0;
const double d = 0.349;
const double d_third = d / 3.0;
const double cf = 2.87123400018819; // (3/10)*pow(3*pi*pi,2/3)
const double cfb = cf * b;
*ec = 0.0;
*vc1 = 0.0;
*vc2 = 0.0;
if ( rho < 1.e-10 ) return;
// LYP correlation
// Phys. Rev. B 37, 785 (1988).
// next lines specialized to the unpolarized case
const double rh13 = cbrt(rho);
const double rhm13 = 1.0 / rh13;
const double rhm43 = rhm13 / rho;
const double e = exp ( - c * rhm13 );
const double num = 1.0 + cfb * e;
const double den = 1.0 + d * rhm13;
const double deninv = 1.0 / den;
const double cfrac = num * deninv;
const double delta = rhm13 * ( c + d * deninv );
const double ddelta = - (1.0/3.0) * ( c * rhm43
+ d * rhm13 * rhm13 / ((d+rh13)*(d+rh13)) );
const double rhm53 = rhm43 * rhm13;
const double t1 = e * deninv;
const double t2 = rhm53;
const double t3 = 6.0 + 14.0 * delta;
const double g = ab36 * t1 * t2 * t3;
// ec is the energy density, hence divide the energy by rho
*ec = - a * cfrac + 0.25 * g * grad * grad / rho;
// potential
const double de = c_third * rhm43 * e;
const double dnum = cfb * de;
const double dden = - d_third * rhm43;
const double dfrac = ( dnum * den - dden * num ) * deninv * deninv;
const double dt1 = de * deninv - e * dden * deninv * deninv;
const double dt2 = - (5.0/3.0) * rhm53/rho;
const double dt3 = 14.0 * ddelta;
const double dg = ab36 * ( dt1 * t2 * t3 + t1 * dt2 * t3 + t1 * t2 * dt3 );
*vc1 = - a * ( cfrac + rho * dfrac ) + 0.25 * dg * grad * grad;
*vc2 = -0.5 * g;
}
////////////////////////////////////////////////////////////////////////////////
void BLYPFunctional::exb88_sp(double rho_up, double rho_dn,
double grad_up2, double grad_dn2, double grad_up_grad_dn,
double *ex_up, double *ex_dn, double *vx1_up, double *vx1_dn,
double *vx2_upup, double *vx2_dndn, double *vx2_updn, double *vx2_dnup)
{
*ex_up = 0.0;
*ex_dn = 0.0;
*vx1_up = 0.0;
*vx1_dn = 0.0;
*vx2_upup = 0.0;
*vx2_updn = 0.0;
*vx2_dnup = 0.0;
*vx2_dndn = 0.0;
if ( rho_up < 1.e-10 && rho_dn < 1.e-10 ) return;
// Becke exchange constants
const double fourthirds = 4.0 / 3.0;
const double beta = 0.0042;
const double cx = -0.9305257363490999; // -1.5*pow(3.0/(4*pi),third)
// Becke's exchange
// A.D.Becke, Phys.Rev. B38, 3098 (1988)
double ex1a = 0.0;
double ex1b = 0.0;
double vx1a = 0.0;
double vx1b = 0.0;
double vx2a = 0.0;
double vx2b = 0.0;
if ( rho_up > 1.e-10 )
{
const double& rha = rho_up;
const double rha13 = cbrt(rha);
const double rha43 = rha * rha13;
const double grada = sqrt(grad_up2);
const double xa = grada / rha43;
const double xa2 = xa*xa;
const double asinhxa = asinh(xa);
const double fraca = 1.0 / ( 1.0 + 6.0 * beta * xa * asinhxa );
const double ga = cx - beta * xa2 * fraca;
// next line, ex is the energy density, hence rh13
ex1a = rha13 * ga;
const double gpa = ( 6.0*beta*beta*xa2 * ( xa/sqrt(xa2+1.0) - asinhxa )
- 2.0*beta*xa ) * fraca * fraca;
vx1a = rha13 * fourthirds * ( ga - xa * gpa );
vx2a = - gpa / grada;
}
if ( rho_dn > 1.e-10 )
{
const double& rhb = rho_dn;
const double rhb13 = cbrt(rhb);
const double rhb43 = rhb * rhb13;
const double gradb = sqrt(grad_dn2);
const double xb = gradb / rhb43;
const double xb2 = xb*xb;
const double asinhxb = asinh(xb);
const double fracb = 1.0 / ( 1.0 + 6.0 * beta * xb * asinhxb );
const double gb = cx - beta * xb2 * fracb;
// next line, ex is the energy density, hence rh13
ex1b = rhb13 * gb;
const double gpb = ( 6.0*beta*beta*xb2 * ( xb/sqrt(xb2+1.0) - asinhxb )
- 2.0*beta*xb ) * fracb * fracb;
vx1b = rhb13 * fourthirds * ( gb - xb * gpb );
vx2b = - gpb / gradb;
}
*ex_up = ex1a;
*ex_dn = ex1b;
*vx1_up = vx1a;
*vx1_dn = vx1b;
*vx2_upup = vx2a;
*vx2_updn = 0.0;
*vx2_dnup = 0.0;
*vx2_dndn = vx2b;
}
////////////////////////////////////////////////////////////////////////////////
void BLYPFunctional::eclyp_sp(double rho_up, double rho_dn,
double grad_up2, double grad_dn2, double grad_up_grad_dn,
double *ec_up, double *ec_dn, double *vc1_up, double *vc1_dn,
double *vc2_upup, double *vc2_dndn, double *vc2_updn, double *vc2_dnup)
{
*ec_up = 0.0;
*ec_dn = 0.0;
*vc1_up = 0.0;
*vc1_dn = 0.0;
*vc2_upup = 0.0;
*vc2_updn = 0.0;
*vc2_dnup = 0.0;
*vc2_dndn = 0.0;
if ( rho_up < 1.e-10 && rho_dn < 1.e-10 ) return;
if ( rho_up + rho_dn < 1.e-10 ) return;
if ( rho_up < 0.0 ) rho_up = 0.0;
if ( rho_dn < 0.0 ) rho_dn = 0.0;
// LYP constants
const double a = 0.04918;
const double b = 0.132;
const double c = 0.2533;
const double d = 0.349;
const double cf = 2.87123400018819; // (3/10)*pow(3*pi*pi,2/3)
const double ninth = 1.0 / 9.0;
const double two113 = pow(2.0,11.0/3.0);
const double fourthirds = 4.0 / 3.0;
const double& rha = rho_up;
const double& rhb = rho_dn;
const double rha13 = cbrt(rha);
const double rhb13 = cbrt(rhb);
const double rha43 = rha * rha13;
const double rhb43 = rhb * rhb13;
const double rha83 = rha43 * rha43;
const double rhb83 = rhb43 * rhb43;
const double rha113 = rha83 * rha;
const double rhb113 = rhb83 * rhb;
// LYP correlation
// Phys. Rev. B 37, 785 (1988).
const double rho = rha + rhb;
const double rhoinv = 1.0/rho;
const double rhab = rha * rhb;
const double rhabrhm = rhab * rhoinv;
const double rh13 = cbrt(rho);
const double rhm13 = 1.0 / rh13;
const double rhm43 = rhm13 / rho;
const double rhm113 = rhm43 * rhm43 * rhm43 * rh13;
const double rhm143 = rhm113 * rhoinv;
const double e = exp ( - c * rhm13 );
const double den = 1.0 + d * rhm13;
const double deninv = 1.0 / den;
const double w = e * deninv * rhm113;
const double dw = (1.0/3.0)*(c*d+(c-10.0*d)*rh13-11.0*rh13*rh13)*e*rhm143/
((d+rh13)*(d+rh13));
const double abw = a * b * w;
const double f1 = -4.0 * a * deninv * rhabrhm;
const double f2 = - two113 * cf * abw * rha * rhb * ( rha83 + rhb83 );
const double delta = rhm13 * ( c + d * deninv );
const double ddelta = - (1.0/3.0) * ( c * rhm43
+ d * rhm13 * rhm13 / ((d+rh13)*(d+rh13)) );
const double taa = 1.0 - 3.0 * delta + ( 11.0 - delta ) * rha * rhoinv;
const double tbb = 1.0 - 3.0 * delta + ( 11.0 - delta ) * rhb * rhoinv;
const double dtaa_drha = -3.0*ddelta - ddelta*rha*rhoinv +
(11.0-delta)*rhoinv*(1.0-rha*rhoinv);
const double dtaa_drhb = -3.0*ddelta - ddelta*rha*rhoinv -
(11.0-delta)*rhoinv*rha*rhoinv;
const double dtbb_drha = -3.0*ddelta - ddelta*rhb*rhoinv -
(11.0-delta)*rhoinv*rhb*rhoinv;
const double dtbb_drhb = -3.0*ddelta - ddelta*rhb*rhoinv +
(11.0-delta)*rhoinv*(1.0-rhb*rhoinv);
const double gaa = - abw * ( rhab * ninth * taa - rhb * rhb );
const double gbb = - abw * ( rhab * ninth * tbb - rha * rha );
const double gab = - abw * ( rhab * ninth * ( 47.0 - 7.0 * delta )
- fourthirds * rho * rho );
// next line, ec is the energy density, hence divide the energy by rho
const double ec1a = ( f1 + f2 + gaa * grad_up2
+ gab * grad_up_grad_dn
+ gbb * grad_dn2 ) / rho;
const double ec1b = ( f1 + f2 + gaa * grad_up2
+ gab * grad_up_grad_dn
+ gbb * grad_dn2 ) / rho;
const double A = -two113*cf*a*b;
const double df1_drha = -fourthirds*a*d*deninv*deninv*rhm43*rhabrhm
- 4.0*a*deninv*rhoinv*(rhb-rhabrhm);
const double df2_drha = A*dw*(rha113*rhb+rha*rhb113)
+ A*w*((11.0/3.0)*rha83*rhb+rhb113);
const double df1_drhb = -fourthirds*a*d*deninv*deninv*rhm43*rhabrhm
- 4.0*a*deninv*rhoinv*(rha-rhabrhm);
const double df2_drhb = A*dw*(rha113*rhb+rha*rhb113)
+ A*w*(rha113+rha*(11.0/3.0)*rhb83);
const double dgaa_drha = -a*b*dw*(rhab*ninth*taa-rhb*rhb)
- abw*(rhb*ninth*taa+rhab*ninth*dtaa_drha);
const double dgaa_drhb = -a*b*dw*(rhab*ninth*taa-rhb*rhb)
- abw*(rha*ninth*taa+rhab*ninth*dtaa_drhb-2.0*rhb);
const double dgbb_drha = -a*b*dw*(rhab*ninth*tbb-rha*rha)
- abw*(rhb*ninth*tbb+rhab*ninth*dtbb_drha-2.0*rha);
const double dgbb_drhb = -a*b*dw*(rhab*ninth*tbb-rha*rha)
- abw*(rha*ninth*tbb+rhab*ninth*dtbb_drhb);
const double dgab_drha = -a*b*dw*(rhab*ninth*(47.0-7.0*delta)
-fourthirds*rho*rho)
-abw*(rhb*ninth*(47.0-7.0*delta)
-rhab*ninth*7.0*ddelta-2.0*fourthirds*rho);
const double dgab_drhb = -a*b*dw*(rhab*ninth*(47.0-7.0*delta)
-fourthirds*rho*rho)
-abw*(rha*ninth*(47.0-7.0*delta)
-rhab*ninth*7.0*ddelta-2.0*fourthirds*rho);
const double vc1a = df1_drha + df2_drha
+ dgaa_drha * grad_up2
+ dgab_drha * grad_up_grad_dn
+ dgbb_drha * grad_dn2;
const double vc1b = df1_drhb + df2_drhb
+ dgaa_drhb * grad_up2
+ dgab_drhb * grad_up_grad_dn
+ dgbb_drhb * grad_dn2;
*ec_up = ec1a;
*ec_dn = ec1b;
*vc1_up = vc1a;
*vc1_dn = vc1b;
*vc2_upup = - 2.0 * gaa;
*vc2_updn = - gab;
*vc2_dnup = - gab;
*vc2_dndn = - 2.0 * gbb;
}